With the increasingly complex and changeable electromagnetic environment, wireless communication systems are facing jamming and abnormal signal injection, which significantly affects the normal operation of a communication system. In particular, the abnormal signals may emulate the normal signals, which makes it very challenging for abnormal signal recognition. In this paper, we propose a new abnormal signal recognition scheme, which combines time-frequency analysis with deep learning to effectively identify synthetic abnormal communication signals. Firstly, we emulate synthetic abnormal communication signals including seven jamming patterns. Then, we model an abnormal communication signals recognition system based on the communication protocol between the transmitter and the receiver. To improve the performance, we convert the original signal into the time-frequency spectrogram to develop an image classification algorithm. Simulation results demonstrate that the proposed method can effectively recognize the abnormal signals under various parameter configurations, even under low signal-to-noise ratio (SNR) and low jamming-to-signal ratio (JSR) conditions.