Entity Set Expansion, Taxonomy Expansion, and Seed-Guided Taxonomy Construction are three representative tasks that can be used to automatically populate an existing taxonomy with new entities. However, previous approaches often address these tasks separately with heterogeneous techniques, lacking a unified perspective. To tackle this issue, in this paper, we identify the common key skills needed for these tasks from the view of taxonomy structures -- finding 'siblings' and finding 'parents' -- and propose a unified taxonomy-guided instruction tuning framework to jointly solve the three tasks. To be specific, by leveraging the existing taxonomy as a rich source of entity relationships, we utilize instruction tuning to fine-tune a large language model to generate parent and sibling entities. Extensive experiments on multiple benchmark datasets demonstrate the effectiveness of TaxoInstruct, which outperforms task-specific baselines across all three tasks.