There is a lack of formalism for some key foundational concepts in systems engineering. One of the most recently acknowledged deficits is the inadequacy of systems engineering practices for engineering intelligent systems. In our previous works, we proposed that closed systems precepts could be used to accomplish a required paradigm shift for the systems engineering of intelligent systems. However, to enable such a shift, formal foundations for closed systems precepts that expand the theory of systems engineering are needed. The concept of closure is a critical concept in the formalism underlying closed systems precepts. In this paper, we provide formal, systems- and information-theoretic definitions of closure to identify and distinguish different types of closed systems. Then, we assert a mathematical framework to evaluate the subjective formation of the boundaries and constraints of such systems. Finally, we argue that engineering an intelligent system can benefit from appropriate closed and open systems paradigms on multiple levels of abstraction of the system. In the main, this framework will provide the necessary fundamentals to aid in systems engineering of intelligent systems.