Generative modelling has become the standard approach for synthesising tabular data. However, different use cases demand synthetic data to comply with different requirements to be useful in practice. In this survey, we review deep generative modelling approaches for tabular data from the perspective of four types of requirements: utility of the synthetic data, alignment of the synthetic data with domain-specific knowledge, statistical fidelity of the synthetic data distribution compared to the real data distribution, and privacy-preserving capabilities. We group the approaches along two levels of granularity: (i) based on the primary type of requirements they address and (ii) according to the underlying model they utilise. Additionally, we summarise the appropriate evaluation methods for each requirement and the specific characteristics of each model type. Finally, we discuss future directions for the field, along with opportunities to improve the current evaluation methods. Overall, this survey can be seen as a user guide to tabular data generation: helping readers navigate available models and evaluation methods to find those best suited to their needs.