https://github.com/KenZLuo/Biomedical-Text-Summarization-Survey/tree/master.
The exponential growth of biomedical texts such as biomedical literature and electronic health records (EHRs), provides a big challenge for clinicians and researchers to access clinical information efficiently. To address the problem, biomedical text summarization has been proposed to support clinical information retrieval and management, aiming at generating concise summaries that distill key information from single or multiple biomedical documents. In recent years, pre-trained language models (PLMs) have been the de facto standard of various natural language processing tasks in the general domain. Most recently, PLMs have been further investigated in the biomedical field and brought new insights into the biomedical text summarization task. In this paper, we systematically summarize recent advances that explore PLMs for biomedical text summarization, to help understand recent progress, challenges, and future directions. We categorize PLMs-based approaches according to how they utilize PLMs and what PLMs they use. We then review available datasets, recent approaches and evaluation metrics of the task. We finally discuss existing challenges and promising future directions. To facilitate the research community, we line up open resources including available datasets, recent approaches, codes, evaluation metrics, and the leaderboard in a public project: