Massive amount of electronic medical records accumulating from patients and populations motivates clinicians and data scientists to collaborate for the advanced analytics to extract knowledge that is essential to address the extensive personalized insights needed for patients, clinicians, providers, scientists, and health policy makers. In this paper, we propose a new predictive approach based on feature representation using deep feature learning and word embedding techniques. Our method uses different deep architectures for feature representation in higher-level abstraction to obtain effective and more robust features from EMRs, and then build prediction models on the top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled one is scarce. We investigate the performance of representation learning through a supervised approach. First, we apply our method on a small dataset related to a specific precision medicine problem, which focuses on prediction of left ventricular mass indexed to body surface area (LVMI) as an indicator of heart damage risk in a vulnerable demographic subgroup (African-Americans). Then we use two large datasets from eICU collaborative research database to predict the length of stay in Cardiac-ICU and Neuro-ICU based on high dimensional features. Finally we provide a comparative study and show that our predictive approach leads to better results in comparison with others.