Aligned latent spaces, where meaningful semantic shifts in the input space correspond to a translation in the embedding space, play an important role in the success of downstream tasks such as unsupervised clustering and data imputation. In this work, we prove that linear and nonlinear autoencoders produce aligned latent spaces by stretching along the left singular vectors of the data. We fully characterize the amount of stretching in linear autoencoders and provide an initialization scheme to arbitrarily stretch along the top directions using these networks. We also quantify the amount of stretching in nonlinear autoencoders in a simplified setting. We use our theoretical results to align drug signatures across cell types in gene expression space and semantic shifts in word embedding spaces.