Accurate channel state information (CSI) is essential for downlink precoding at the base station (BS), especially for frequency FDD wideband massive MIMO systems with OFDM. In FDD systems, CSI is attained through CSI feedback from the user equipment (UE). However, large-scale antennas and large number of subcarriers significantly increase CSI feedback overhead. Deep learning-based CSI feedback methods have received tremendous attention in recent years due to their great capability of compressing CSI. Nonetheless, large amounts of collected samples are required to train deep learning models, which is severely challenging in practice. Besides, with the rapidly increasing number of antennas and subcarriers, most of these deep learning methods' CSI feedback overhead also grow dramatically, owing to their focus on full-dimensional CSI feedback. To address this issue, in this paper, we propose a low-overhead Incorporation-Extrapolation based Few-Shot CSI feedback Framework (IEFSF) for massive MIMO systems. To further reduce the feedback overhead, a low-dimensional eigenvector-based CSI matrix is first formed with the incorporation process at the UE, and then recovered to the full-dimensional eigenvector-based CSI matrix at the BS via the extrapolation process. After that, to alleviate the necessity of the extensive collected samples and enable few-shot CSI feedback, we further propose a knowledge-driven data augmentation method and an artificial intelligence-generated content (AIGC) -based data augmentation method by exploiting the domain knowledge of wireless channels and by exploiting a novel generative model, respectively. Numerical results demonstrate that the proposed IEFSF can significantly reduce CSI feedback overhead by 16 times compared with existing CSI feedback methods while maintaining higher feedback accuracy using only several hundreds of collected samples.