Belief Propagation (BP) is one of the most popular methods for inference in probabilistic graphical models. BP is guaranteed to return the correct answer for tree structures, but can be incorrect or non-convergent for loopy graphical models. Recently, several new approximate inference algorithms based on cavity distribution have been proposed. These methods can account for the effect of loops by incorporating the dependency between BP messages. Alternatively, region-based approximations (that lead to methods such as Generalized Belief Propagation) improve upon BP by considering interactions within small clusters of variables, thus taking small loops within these clusters into account. This paper introduces an approach, Generalized Loop Correction (GLC), that benefits from both of these types of loop correction. We show how GLC relates to these two families of inference methods, then provide empirical evidence that GLC works effectively in general, and can be significantly more accurate than both correction schemes.