Clustering is a fundamental tool in statistical machine learning in the presence of heterogeneous data. Many recent results focus primarily on optimal mislabeling guarantees, when data are distributed around centroids with sub-Gaussian errors. Yet, the restrictive sub-Gaussian model is often invalid in practice, since various real-world applications exhibit heavy tail distributions around the centroids or suffer from possible adversarial attacks that call for robust clustering with a robust data-driven initialization. In this paper, we introduce a hybrid clustering technique with a novel multivariate trimmed mean type centroid estimate to produce mislabeling guarantees under a weak initialization condition for general error distributions around the centroids. A matching lower bound is derived, up to factors depending on the number of clusters. In addition, our approach also produces the optimal mislabeling even in the presence of adversarial outliers. Our results reduce to the sub-Gaussian case when errors follow sub-Gaussian distributions. To solve the problem thoroughly, we also present novel data-driven robust initialization techniques and show that, with probabilities approaching one, these initial centroid estimates are sufficiently good for the subsequent clustering algorithm to achieve the optimal mislabeling rates. Furthermore, we demonstrate that the Lloyd algorithm is suboptimal for more than two clusters even when errors are Gaussian, and for two clusters when errors distributions have heavy tails. Both simulated data and real data examples lend further support to both of our robust initialization procedure and clustering algorithm.