https://github.com/zzb-nice/DOA_est_Master.
In practical scenarios, processes such as sensor design, manufacturing, and installation will introduce certain errors. Furthermore, mutual interference occurs when the sensors receive signals. These defects in array systems are referred to as array imperfections, which can significantly degrade the performance of Direction of Arrival (DOA) estimation. In this study, we propose a deep-learning based transfer learning approach, which effectively mitigates the degradation of deep-learning based DOA estimation performance caused by array imperfections. In the proposed approach, we highlight three major contributions. First, we propose a Vision Transformer (ViT) based method for DOA estimation, which achieves excellent performance in scenarios with low signal-to-noise ratios (SNR) and limited snapshots. Second, we introduce a transfer learning framework that extends deep learning models from ideal simulation scenarios to complex real-world scenarios with array imperfections. By leveraging prior knowledge from ideal simulation data, the proposed transfer learning framework significantly improves deep learning-based DOA estimation performance in the presence of array imperfections, without the need for extensive real-world data. Finally, we incorporate visualization and evaluation metrics to assess the performance of DOA estimation algorithms, which allow for a more thorough evaluation of algorithms and further validate the proposed method. Our code can be accessed at