https://github.com/frozoul/4K-NeRF}
In this paper, we present a novel and effective framework, named 4K-NeRF, to pursue high fidelity view synthesis on the challenging scenarios of ultra high resolutions, building on the methodology of neural radiance fields (NeRF). The rendering procedure of NeRF-based methods typically relies on a pixel wise manner in which rays (or pixels) are treated independently on both training and inference phases, limiting its representational ability on describing subtle details especially when lifting to a extremely high resolution. We address the issue by better exploring ray correlation for enhancing high-frequency details benefiting from the use of geometry-aware local context. Particularly, we use the view-consistent encoder to model geometric information effectively in a lower resolution space and recover fine details through the view-consistent decoder, conditioned on ray features and depths estimated by the encoder. Joint training with patch-based sampling further facilitates our method incorporating the supervision from perception oriented regularization beyond pixel wise loss. Quantitative and qualitative comparisons with modern NeRF methods demonstrate that our method can significantly boost rendering quality for retaining high-frequency details, achieving the state-of-the-art visual quality on 4K ultra-high-resolution scenario. Code Available at \url{