Terahertz (THz) communication is envisioned as the possible technology for the sixth-generation (6G) communication system. THz channel propagation characteristics are the basis of designing and evaluating for THz communication system. In this paper, THz channel measurements at 100 GHz and 132 GHz are conducted in an indoor office scenario and an urban microcellular (UMi) scenario, respectively. Based on the measurement, the 3GPP-like channel parameters are extracted and analyzed. Moreover, the parameters models are available for the simulation of the channel impulse response by the geometry-based stochastic model (GBSM). Then, the comparisons between measurement-based parameter models and 3rd Generation Partnership Project (3GPP) channel models are investigated. It is observed that the case with path loss approaching free space exists in the NLoS scenario. Besides, the cluster number are 4 at LoS and 5 at NLoS in the indoor office and 4 at LoS and 3 at NLoS in the UMi, which are much less than 3GPP. The multipath component (MPC) in the THz channel distributes more simpler and more sparsely than the 3GPP millimeter wave (mm-wave) channel models. Furthermore, the ergodic capacity of mm-wave and THz are evaluated by the proposed THz GBSM implementation framework. The THz measurement model predicts the smallest capacity, indicating that high carrier frequency is limited to the single transmission mechanism of reflection and results in the reduction of cluster numbers and ergodic capacity. Generally, these results are helpful to understand and model the THz channel and apply the THz communication technique for 6G.