Abstract:Facial dysmorphology or malocclusion is frequently associated with abnormal growth of the face. The ability to predict facial growth (FG) direction would allow clinicians to prepare individualized therapy to increase the chance for successful treatment. Prediction of FG direction is a novel problem in the machine learning (ML) domain. In this paper, we perform feature selection and point the attribute that plays a central role in the abovementioned problem. Then we successfully apply data augmentation (DA) methods and improve the previously reported classification accuracy by 2.81%. Finally, we present the results of two experienced clinicians that were asked to solve a similar task to ours and show how tough is solving this problem for human experts.
Abstract:First attempts of prediction of the facial growth (FG) direction were made over half of a century ago. Despite numerous attempts and elapsed time, a satisfactory method has not been established yet and the problem still poses a challenge for medical experts. To our knowledge, this paper is the first Machine Learning approach to the prediction of FG direction. Conducted data analysis reveals the inherent complexity of the problem and explains the reasons of difficulty in FG direction prediction based on 2D X-ray images. To perform growth forecasting, we employ a wide range of algorithms, from logistic regression, through tree ensembles to neural networks and consider three, slightly different, problem formulations. The resulting classification accuracy varies between 71% and 75%.