Abstract:Hesitant fuzzy linguistic preference relation (HFLPR) is of interest because it provides an efficient way for opinion expression under uncertainty. For enhancing the theory of decision making with HFLPR, the paper introduces an algorithm for group decision making with HFLPRs based on the acceptable consistency and consensus measurements, which involves (1) defining a hesitant fuzzy linguistic geometric consistency index (HFLGCI) and proposing a procedure for consistency checking and inconsistency improving for HFLPR; (2) measuring the group consensus based on the similarity between the original individual HFLPRs and the overall perfect HFLPR, then establishing a procedure for consensus ensuring including the determination of decision-makers weights. The convergence and monotonicity of the proposed two procedures have been proved. Some experiments are furtherly performed to investigate the critical values of the defined HFLGCI, and comparative analyses are conducted to show the effectiveness of the proposed algorithm. A case concerning the performance evaluation of venture capital guiding funds is given to illustrate the availability of the proposed algorithm. As an application of our work, an online decision-making portal is finally provided for decision-makers to utilize the proposed algorithms to solve decision-making problems.
Abstract:In this paper, we propose a realistic multiple dynamic pricing approach to demand response in the retail market. First, an adaptive clustering-based customer segmentation framework is proposed to categorize customers into different groups to enable the effective identification of usage patterns. Second, customized demand models with important market constraints which capture the price-demand relationship explicitly, are developed for each group of customers to improve the model accuracy and enable meaningful pricing. Third, the multiple pricing based demand response is formulated as a profit maximization problem subject to realistic market constraints. The overall aim of the proposed scalable and practical method aims to achieve 'right' prices for 'right' customers so as to benefit various stakeholders in the system such as grid operators, customers and retailers. The proposed multiple pricing framework is evaluated via simulations based on real-world datasets.