Abstract:This paper presents the Crowd Score, a novel method to assess the funniness of jokes using large language models (LLMs) as AI judges. Our method relies on inducing different personalities into the LLM and aggregating the votes of the AI judges into a single score to rate jokes. We validate the votes using an auditing technique that checks if the explanation for a particular vote is reasonable using the LLM. We tested our methodology on 52 jokes in a crowd of four AI voters with different humour types: affiliative, self-enhancing, aggressive and self-defeating. Our results show that few-shot prompting leads to better results than zero-shot for the voting question. Personality induction showed that aggressive and self-defeating voters are significantly more inclined to find more jokes funny of a set of aggressive/self-defeating jokes than the affiliative and self-enhancing voters. The Crowd Score follows the same trend as human judges by assigning higher scores to jokes that are also considered funnier by human judges. We believe that our methodology could be applied to other creative domains such as story, poetry, slogans, etc. It could both help the adoption of a flexible and accurate standard approach to compare different work in the CC community under a common metric and by minimizing human participation in assessing creative artefacts, it could accelerate the prototyping of creative artefacts and reduce the cost of hiring human participants to rate creative artefacts.
Abstract:Co-creative Procedural Content Generation via Machine Learning (PCGML) refers to systems where a PCGML agent and a human work together to produce output content. One of the limitations of co-creative PCGML is that it requires co-creative training data for a PCGML agent to learn to interact with humans. However, acquiring this data is a difficult and time-consuming process. In this work, we propose approximating human-AI interaction data and employing transfer learning to adapt learned co-creative knowledge from one game to a different game. We explore this approach for co-creative Zelda dungeon room generation.