Abstract:Factor model is a fundamental investment tool in quantitative investment, which can be empowered by deep learning to become more flexible and efficient in practical complicated investing situations. However, it is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting, where the model can adapt itself to match the current market regime identified based on only point-in-time market information. To tackle this problem, we propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the underlying relationship between the market situation and stock-wise latent factors, so that HireVAE can effectively estimate useful latent factors given only historical market information and subsequently predict accurate stock returns. Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods, verifying the potential of such online and adaptive factor model.
Abstract:Active investing aims to construct a portfolio of assets that are believed to be relatively profitable in the markets, with one popular method being to construct a portfolio via factor-based strategies. In recent years, there have been increasing efforts to apply deep learning to pursue "deep factors'' with more active returns or promising pipelines for asset trends prediction. However, the question of how to construct an active investment portfolio via an end-to-end deep learning framework (E2E) is still open and rarely addressed in existing works. In this paper, we are the first to propose an E2E that covers almost the entire process of factor investing through factor selection, factor combination, stock selection, and portfolio construction. Extensive experiments on real stock market data demonstrate the effectiveness of our end-to-end deep leaning framework in active investing.
Abstract:To accurately predict trajectories in multi-agent settings, e.g. team games, it is important to effectively model the interactions among agents. Whereas a number of methods have been developed for this purpose, existing methods implicitly model these interactions as part of the deep net architecture. However, in the real world, interactions often exist at multiple levels, e.g. individuals may form groups, where interactions among groups and those among the individuals in the same group often follow significantly different patterns. In this paper, we present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus via an interactive hierarchical latent space. This formulation allows group-level and individual-level interactions to be captured jointly, thus substantially improving the capability of modeling complex dynamics. On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.