Abstract:The advent and growing popularity of Virtual Reality (VR) and Mixed Reality (MR) solutions have revolutionized the way we interact with digital platforms. The cutting-edge gaze-controlled typing methods, now prevalent in high-end models of these devices, e.g., Apple Vision Pro, have not only improved user experience but also mitigated traditional keystroke inference attacks that relied on hand gestures, head movements and acoustic side-channels. However, this advancement has paradoxically given birth to a new, potentially more insidious cyber threat, GAZEploit. In this paper, we unveil GAZEploit, a novel eye-tracking based attack specifically designed to exploit these eye-tracking information by leveraging the common use of virtual appearances in VR applications. This widespread usage significantly enhances the practicality and feasibility of our attack compared to existing methods. GAZEploit takes advantage of this vulnerability to remotely extract gaze estimations and steal sensitive keystroke information across various typing scenarios-including messages, passwords, URLs, emails, and passcodes. Our research, involving 30 participants, achieved over 80% accuracy in keystroke inference. Alarmingly, our study also identified over 15 top-rated apps in the Apple Store as vulnerable to the GAZEploit attack, emphasizing the urgent need for bolstered security measures for this state-of-the-art VR/MR text entry method.
Abstract:Wireless charging is becoming an increasingly popular charging solution in portable electronic products for a more convenient and safer charging experience than conventional wired charging. However, our research identified new vulnerabilities in wireless charging systems, making them susceptible to intentional electromagnetic interference. These vulnerabilities facilitate a set of novel attack vectors, enabling adversaries to manipulate the charger and perform a series of attacks. In this paper, we propose VoltSchemer, a set of innovative attacks that grant attackers control over commercial-off-the-shelf wireless chargers merely by modulating the voltage from the power supply. These attacks represent the first of its kind, exploiting voltage noises from the power supply to manipulate wireless chargers without necessitating any malicious modifications to the chargers themselves. The significant threats imposed by VoltSchemer are substantiated by three practical attacks, where a charger can be manipulated to: control voice assistants via inaudible voice commands, damage devices being charged through overcharging or overheating, and bypass Qi-standard specified foreign-object-detection mechanism to damage valuable items exposed to intense magnetic fields. We demonstrate the effectiveness and practicality of the VoltSchemer attacks with successful attacks on 9 top-selling COTS wireless chargers. Furthermore, we discuss the security implications of our findings and suggest possible countermeasures to mitigate potential threats.
Abstract:Side-channel analysis has been proven effective at detecting hardware Trojans in integrated circuits (ICs). However, most detection techniques rely on large external probes and antennas for data collection and require a long measurement time to detect Trojans. Such limitations make these techniques impractical for run-time deployment and ineffective in detecting small Trojans with subtle side-channel signatures. To overcome these challenges, we propose a Programmable Sensor Array (PSA) for run-time hardware Trojan detection, localization, and identification. PSA is a tampering-resilient integrated on-chip magnetic field sensor array that can be re-programmed to change the sensors' shape, size, and location. Using PSA, EM side-channel measurement results collected from sensors at different locations on an IC can be analyzed to localize and identify the Trojan. The PSA has better performance than conventional external magnetic probes and state-of-the-art on-chip single-coil magnetic field sensors. We fabricated an AES-128 test chip with four AES Hardware Trojans. They were successfully detected, located, and identified with the proposed on-chip PSA within 10 milliseconds using our proposed cross-domain analysis.