Abstract:Currently, the world seeks to find appropriate mitigation techniques to control and prevent the spread of the new SARS-CoV-2. In our paper herein, we present a peculiar Multi-Task Learning framework that jointly predicts the effect of SARS-CoV-2 as well as Personal-Protective-Equipment consumption in Community Health Centres for a given populace. Predicting the effect of the virus (SARS-CoV-2), via studies and analyses, enables us to understand the nature of SARS-CoV- 2 with reference to factors that promote its growth and spread. Therefore, these foster widespread awareness; and the populace can become more proactive and cautious so as to mitigate the spread of Corona Virus Disease 2019 (COVID- 19). Furthermore, understanding and predicting the demand for Personal Protective Equipment promotes the efficiency and safety of healthcare workers in Community Health Centres. Owing to the novel nature and strains of SARS-CoV-2, relatively few literature and research exist in this regard. These existing literature have attempted to solve the problem statement(s) using either Agent-based Models, Machine Learning Models, or Mathematical Models. In view of this, our work herein adds to existing literature via modeling our problem statements as Multi- Task Learning problems. Results from our research indicate that government actions and human factors are the most significant determinants that influence the spread of SARS-CoV-2.
Abstract:Faecal Calprotectin (FC) is a surrogate marker for intestinal inflammation, termed Inflammatory Bowel Disease (IBD), but not for cancer. In this retrospective study of 804 patients, an enhanced benchmark predictive model for analyzing FC is developed, based on a novel state-of-the-art Echo State Network (ESN), an advanced dynamic recurrent neural network which implements a biologically plausible architecture, and a supervised learning mechanism. The proposed machine learning driven predictive model is benchmarked against a conventional logistic regression model, demonstrating statistically significant performance improvements.