Abstract:Regularization strategies in medical image registration often take a one-size-fits-all approach by imposing uniform constraints across the entire image domain. Yet biological structures are anything but regular. Lacking structural awareness, these strategies may fail to consider a panoply of spatially inhomogeneous deformation properties, which would faithfully account for the biomechanics of soft and hard tissues, especially in poorly contrasted structures. To bridge this gap, we propose a learning-based image registration approach in which the inferred deformation properties can locally adapt themselves to trained biomechanical characteristics. Specifically, we first enforce in the training process local rigid displacements, shearing motions or pseudo-elastic deformations using regularization losses inspired from the field of solid-mechanics. We then show on synthetic and real 3D thoracic and abdominal images that these mechanical properties of different nature are well generalized when inferring the deformations between new image pairs. Our approach enables neural-networks to infer tissue-specific deformation patterns directly from input images, ensuring mechanically plausible motion. These networks preserve rigidity within hard tissues while allowing controlled sliding in regions where tissues naturally separate, more faithfully capturing physiological motion. The code is publicly available at https://github.com/Kheil-Z/biomechanical_DLIR .
Abstract:Real-life medical data is often multimodal and incomplete, fueling the growing need for advanced deep learning models capable of integrating them efficiently. The use of diverse modalities, including histopathology slides, MRI, and genetic data, offers unprecedented opportunities to improve prognosis prediction and to unveil new treatment pathways. Contrastive learning, widely used for deriving representations from paired data in multimodal tasks, assumes that different views contain the same task-relevant information and leverages only shared information. This assumption becomes restrictive when handling medical data since each modality also harbors specific knowledge relevant to downstream tasks. We introduce DRIM, a new multimodal method for capturing these shared and unique representations, despite data sparsity. More specifically, given a set of modalities, we aim to encode a representation for each one that can be divided into two components: one encapsulating patient-related information common across modalities and the other, encapsulating modality-specific details. This is achieved by increasing the shared information among different patient modalities while minimizing the overlap between shared and unique components within each modality. Our method outperforms state-of-the-art algorithms on glioma patients survival prediction tasks, while being robust to missing modalities. To promote reproducibility, the code is made publicly available at https://github.com/Lucas-rbnt/DRIM