Abstract:In order to avoid the impact of hard samples on the training process of the Flying Bird Object Detection model (FBOD model, in our previous work, we designed the FBOD model according to the characteristics of flying bird objects in surveillance video), the Self-Paced Learning strategy with Easy Sample Prior Based on Confidence (SPL-ESP-BC), a new model training strategy, is proposed. Firstly, the loss-based Minimizer Function in Self-Paced Learning (SPL) is improved, and the confidence-based Minimizer Function is proposed, which makes it more suitable for one-class object detection tasks. Secondly, to give the model the ability to judge easy and hard samples at the early stage of training by using the SPL strategy, an SPL strategy with Easy Sample Prior (ESP) is proposed. The FBOD model is trained using the standard training strategy with easy samples first, then the SPL strategy with all samples is used to train it. Combining the strategy of the ESP and the Minimizer Function based on confidence, the SPL-ESP-BC model training strategy is proposed. Using this strategy to train the FBOD model can make it to learn the characteristics of the flying bird object in the surveillance video better, from easy to hard. The experimental results show that compared with the standard training strategy that does not distinguish between easy and hard samples, the AP50 of the FBOD model trained by the SPL-ESP-BC is increased by 2.1%, and compared with other loss-based SPL strategies, the FBOD model trained with SPL-ESP-BC strategy has the best comprehensive detection performance.
Abstract:A Flying Bird Dataset for Surveillance Videos (FBD-SV-2024) is introduced and tailored for the development and performance evaluation of flying bird detection algorithms in surveillance videos. This dataset comprises 483 video clips, amounting to 28,694 frames in total. Among them, 23,833 frames contain 28,366 instances of flying birds. The proposed dataset of flying birds in surveillance videos is collected from realistic surveillance scenarios, where the birds exhibit characteristics such as inconspicuous features in single frames (in some instances), generally small sizes, and shape variability during flight. These attributes pose challenges that need to be addressed when developing flying bird detection methods for surveillance videos. Finally, advanced (video) object detection algorithms were selected for experimentation on the proposed dataset, and the results demonstrated that this dataset remains challenging for the algorithms above. The FBD-SV-2024 is now publicly available: Please visit https://github.com/Ziwei89/FBD-SV-2024_github for the dataset download link and related processing scripts.