Abstract:Deep learning has achieved remarkable success in medical image classification. However, its clinical application is often hindered by data heterogeneity caused by variations in scanner vendors, imaging protocols, and operators. Approaches such as invariant risk minimization (IRM) aim to address this challenge of out-of-distribution generalization. For instance, VIRM improves upon IRM by tackling the issue of insufficient feature support overlap, demonstrating promising potential. Nonetheless, these methods face limitations in medical imaging due to the scarcity of annotated data and the inefficiency of augmentation strategies. To address these issues, we propose a novel domain-oriented direction selector to replace the random augmentation strategy used in VIRM. Our method leverages inter-domain covariance as a guider for augmentation direction, guiding data augmentation towards the target domain. This approach effectively reduces domain discrepancies and enhances generalization performance. Experiments on a multi-center diabetic retinopathy dataset demonstrate that our method outperforms state-of-the-art approaches, particularly under limited data conditions and significant domain heterogeneity.
Abstract:Deep models often struggle with out-of-distribution (OOD) generalization, limiting their real-world applicability beyond controlled laboratory settings. Invariant risk minimization (IRM) addresses this issue by learning invariant features and minimizing the risk across different domains. Thus, it avoids the pitfalls of pseudo-invariant features and spurious causality associated with empirical risk minimization (ERM). However, according to the support overlap theorem, ERM and IRM may fail to address the OOD problem when pseudo-invariant features have insufficient support overlap. To this end, we propose a novel method to enlarge feature support overlap for domain generalization. Specifically, we introduce Bayesian random semantic data augmentation to increase sample diversity and overcome the deficiency of IRM. Experiments on several challenging OOD generalization benchmarks demonstrate that our approach surpasses existing models, delivering superior performance and robustness. The code is available at \url{https://github.com/YaoyaoZhu19/BSDG}.