Abstract:While dust significantly affects the environmental perception of automated agricultural machines, the existing deep learning-based methods for dust removal require further research and improvement in this area to improve the performance and reliability of automated agricultural machines in agriculture. We propose an end-to-end trainable learning network (DedustNet) to solve the real-world agricultural dust removal task. To our knowledge, DedustNet is the first time Swin Transformer-based units have been used in wavelet networks for agricultural image dusting. Specifically, we present the frequency-dominated block (DWTFormer block and IDWTFormer block) by adding a spatial features aggregation scheme (SFAS) to the Swin Transformer and combining it with the wavelet transform, the DWTFormer block and IDWTFormer block, alleviating the limitation of the global receptive field of Swin Transformer when dealing with complex dusty backgrounds. Furthermore, We propose a cross-level information fusion module to fuse different levels of features and effectively capture global and long-range feature relationships. In addition, we present a dilated convolution module to capture contextual information guided by wavelet transform at multiple scales, which combines the advantages of wavelet transform and dilated convolution. Our algorithm leverages deep learning techniques to effectively remove dust from images while preserving the original structural and textural features. Compared to existing state-of-the-art methods, DedustNet achieves superior performance and more reliable results in agricultural image dedusting, providing strong support for the application of agricultural machinery in dusty environments. Additionally, the impressive performance on real-world hazy datasets and application tests highlights DedustNet superior generalization ability and computer vision-related application performance.
Abstract:Although deep convolutional neural networks have achieved remarkable success in removing synthetic fog, it is essential to be able to process images taken in complex foggy conditions, such as dense or non-homogeneous fog, in the real world. However, the haze distribution in the real world is complex, and downsampling can lead to color distortion or loss of detail in the output results as the resolution of a feature map or image resolution decreases. In addition to the challenges of obtaining sufficient training data, overfitting can also arise in deep learning techniques for foggy image processing, which can limit the generalization abilities of the model, posing challenges for its practical applications in real-world scenarios. Considering these issues, this paper proposes a Transformer-based wavelet network (WaveletFormerNet) for real-world foggy image recovery. We embed the discrete wavelet transform into the Vision Transformer by proposing the WaveletFormer and IWaveletFormer blocks, aiming to alleviate texture detail loss and color distortion in the image due to downsampling. We introduce parallel convolution in the Transformer block, which allows for the capture of multi-frequency information in a lightweight mechanism. Additionally, we have implemented a feature aggregation module (FAM) to maintain image resolution and enhance the feature extraction capacity of our model, further contributing to its impressive performance in real-world foggy image recovery tasks. Extensive experiments demonstrate that our WaveletFormerNet performs better than state-of-the-art methods, as shown through quantitative and qualitative evaluations of minor model complexity. Additionally, our satisfactory results on real-world dust removal and application tests showcase the superior generalization ability and improved performance of WaveletFormerNet in computer vision-related applications.