Abstract:The strength of materials, like many problems in the natural sciences, spans multiple length and time scales, and the solution has to balance accuracy and performance. Peierls stress is one of the central concepts in crystal plasticity that measures the strength through the resistance of a dislocation to plastic flow. The determination of Peierls stress involves a multiscale nature depending on both elastic lattice responses and the energy landscape of crystal slips. Material screening by strength via the Peierls stress from first-principles calculations is computationally intractable for the nonlocal characteristics of dislocations, and not included in the state-of-the-art computational material databases. In this work, we propose a physics-transfer framework to learn the physics of crystal plasticity from empirical atomistic simulations and then predict the Peierls stress from chemically accurate density functional theory-based calculations of material parameters. Notably, the strengths of single-crystalline metals can be predicted from a few single-point calculations for the deformed lattice and on the {\gamma} surface, allowing efficient, high-throughput screening for material discovery. Uncertainty quantification is carried out to assess the accuracy of models and sources of errors, showing reduced physical and system uncertainties in the predictions by elevating the fidelity of training models. This physics-transfer framework can be generalized to other problems facing the accuracy-performance dilemma, by harnessing the hierarchy of physics in the multiscale models of materials science.
Abstract:To remotely monitor the physiological status of the human body, long range (LoRa) communication has been considered as an eminently suitable candidate for wireless body area networks (WBANs). Typically, a Rayleigh-lognormal fading channel is encountered by the LoRa links of the WBAN. In this context, we characterize the performance of the LoRa system in WBAN scenarios with an emphasis on the physical (PHY) layer and medium access control (MAC) layer in the face of Rayleigh-lognormal fading channels and the same spreading factor interference. Specifically, closed-form approximate bit error probability (BEP) expressions are derived for the LoRa system. The results show that increasing the SF and reducing the interference efficiently mitigate the shadowing effects. Moreover, in the quest for the most suitable MAC protocol for LoRa based WBANs, three MAC protocols are critically appraised, namely the pure ALOHA, slotted ALOHA, and carrier-sense multiple access. The coverage probability, energy efficiency, throughput, and system delay of the three MAC protocols are analyzed in Rayleigh-lognormal fading channel. Furthermore, the performance of the equal-interval-based and equal-area-based schemes is analyzed to guide the choice of the SF. Our simulation results confirm the accuracy of the mathematical analysis and provide some useful insights for the future design of LoRa based WBANs.
Abstract:Extreme mechanical processes such as strong lattice distortion and bond breakage during fracture are ubiquitous in nature and engineering, which often lead to catastrophic failure of structures. However, understanding the nucleation and growth of cracks is challenged by their multiscale characteristics spanning from atomic-level structures at the crack tip to the structural features where the load is applied. Molecular simulations offer an important tool to resolve the progressive microstructural changes at crack fronts and are widely used to explore processes therein, such as mechanical energy dissipation, crack path selection, and dynamic instabilities (e.g., kinking, branching). Empirical force fields developed based on local descriptors based on atomic positions and the bond orders do not yield satisfying predictions of fracture, even for the nonlinear, anisotropic stress-strain relations and the energy densities of edges. High-fidelity force fields thus should include the tensorial nature of strain and the energetics of rare events during fracture, which, unfortunately, have not been taken into account in both the state-of-the-art empirical and machine-learning force fields. Based on data generated by first-principles calculations, we develop a neural network-based force field for fracture, NN-F$^3$, by combining pre-sampling of the space of strain states and active-learning techniques to explore the transition states at critical bonding distances. The capability of NN-F$^3$ is demonstrated by studying the rupture of h-BN and twisted bilayer graphene as model problems. The simulation results confirm recent experimental findings and highlight the necessity to include the knowledge of electronic structures from first-principles calculations in predicting extreme mechanical processes.
Abstract:Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design. However, fatigue often involves entangled complexities of material microstructures and service conditions, making diagnosis and prognosis of fatigue damage challenging. We report a statistical learning framework to predict the growth of fatigue cracks and the life-to-failure of the components under loading conditions with uncertainties. Digital libraries of fatigue crack patterns and the remaining life are constructed by high-fidelity physical simulations. Dimensionality reduction and neural network architectures are then used to learn the history dependence and nonlinearity of fatigue crack growth. Path-slicing and re-weighting techniques are introduced to handle the statistical noises and rare events. The predicted fatigue crack patterns are self-updated and self-corrected by the evolving crack patterns. The end-to-end approach is validated by representative examples with fatigue cracks in plates, which showcase the digital-twin scenario in real-time structural health monitoring and fatigue life prediction for maintenance management decision-making.
Abstract:Morphological development into evolutionary patterns under structural instability is ubiquitous in living systems and often of vital importance for engineering structures. Here we propose a data-driven approach to understand and predict their spatiotemporal complexities. A machine-learning framework is proposed based on the physical modeling of morphogenesis triggered by internal or external forcing. Digital libraries of structural patterns are constructed from the simulation data, which are then used to recognize the abnormalities, predict their development, and assist in risk assessment and prognosis. The capabilities to identify the key bifurcation characteristics and predict the history-dependent development from the global and local features are demonstrated by examples of brain growth and aerospace structural design, which offer guidelines for disease diagnosis/prognosis and instability-tolerant design.