Extreme mechanical processes such as strong lattice distortion and bond breakage during fracture are ubiquitous in nature and engineering, which often lead to catastrophic failure of structures. However, understanding the nucleation and growth of cracks is challenged by their multiscale characteristics spanning from atomic-level structures at the crack tip to the structural features where the load is applied. Molecular simulations offer an important tool to resolve the progressive microstructural changes at crack fronts and are widely used to explore processes therein, such as mechanical energy dissipation, crack path selection, and dynamic instabilities (e.g., kinking, branching). Empirical force fields developed based on local descriptors based on atomic positions and the bond orders do not yield satisfying predictions of fracture, even for the nonlinear, anisotropic stress-strain relations and the energy densities of edges. High-fidelity force fields thus should include the tensorial nature of strain and the energetics of rare events during fracture, which, unfortunately, have not been taken into account in both the state-of-the-art empirical and machine-learning force fields. Based on data generated by first-principles calculations, we develop a neural network-based force field for fracture, NN-F$^3$, by combining pre-sampling of the space of strain states and active-learning techniques to explore the transition states at critical bonding distances. The capability of NN-F$^3$ is demonstrated by studying the rupture of h-BN and twisted bilayer graphene as model problems. The simulation results confirm recent experimental findings and highlight the necessity to include the knowledge of electronic structures from first-principles calculations in predicting extreme mechanical processes.