Abstract:Most existing synthetic aperture radar (SAR) ship classification technologies heavily rely on correctly labeled data, ignoring the discriminative features of unlabeled SAR ship images. Even though researchers try to enrich CNN-based features by introducing traditional handcrafted features, existing methods easily cause information redundancy and fail to capture the interaction between them. To address these issues, we propose a novel dual-stream contrastive predictive network (DCPNet), which consists of two asymmetric task designs and the false negative sample elimination module. The first task is to construct positive sample pairs, guiding the core encoder to learn more general representations. The second task is to encourage adaptive capture of the correspondence between deep features and handcrated features, achieving knowledge transfer within the model, and effectively improving the redundancy caused by the feature fusion. To increase the separability between clusters, we also design a cluster-level tasks. The experimental results on OpenSARShip and FUSAR-Ship datasets demonstrate the improvement in classification accuracy of supervised models and confirm the capability of learning effective representations of DCPNet.
Abstract:The single domain generalization(SDG) based on meta-learning has emerged as an effective technique for solving the domain-shift problem. However, the inadequate match of data distribution between source and augmented domains and difficult separation of domain-invariant features from domain-related features make SDG model hard to achieve great generalization. Therefore, a novel meta-learning method based on domain enhancement and feature alignment (MetaDefa) is proposed to improve the model generalization performance. First, the background substitution and visual corruptions techniques are used to generate diverse and effective augmented domains. Then, the multi-channel feature alignment module based on class activation maps and class agnostic activation maps is designed to effectively extract adequate transferability knowledge. In this module, domain-invariant features can be fully explored by focusing on similar target regions between source and augmented domains feature space and suppressing the feature representation of non-similar target regions. Extensive experiments on two publicly available datasets show that MetaDefa has significant generalization performance advantages in unknown multiple target domains.
Abstract:In current synthetic aperture radar (SAR) object classification, one of the major challenges is the severe overfitting issue due to the limited dataset (few-shot) and noisy data. Considering the advantages of knowledge distillation as a learned label smoothing regularization, this paper proposes a novel Double Reverse Regularization Network based on Self-Knowledge Distillation (DRRNet-SKD). Specifically, through exploring the effect of distillation weight on the process of distillation, we are inspired to adopt the double reverse thought to implement an effective regularization network by combining offline and online distillation in a complementary way. Then, the Adaptive Weight Assignment (AWA) module is designed to adaptively assign two reverse-changing weights based on the network performance, allowing the student network to better benefit from both teachers. The experimental results on OpenSARShip and FUSAR-Ship demonstrate that DRRNet-SKD exhibits remarkable performance improvement on classical CNNs, outperforming state-of-the-art self-knowledge distillation methods.