Abstract:On-device machine learning (ML) is getting more and more popular as fast evolving AI accelerators emerge on mobile and edge devices. Consequently, thousands of proprietary ML models are being deployed on billions of untrusted devices, raising a serious security concern about the model privacy. However, how to protect the model privacy without losing access to the AI accelerators is a challenging problem. This paper presents a novel on-device model inference system called ShadowNet, which protects the model privacy with TEE while securely outsourcing the heavy linear layers of the model onto the hardware accelerators without trusting them. ShadowNet achieves it by transforming the weights of the linear layers before outsourcing them and restoring the results inside the TEE. The nonlinear layers are also kept secure inside the TEE. The transformation of the weights and the restoration of the results are designed in a way that can be implemented efficiently. We have built a ShadowNet prototype based on TensorFlow Lite and applied it on three popular CNNs including AlexNet, MiniVGG and MobileNets. Our evaluation shows that the ShadowNet transformed models have comparable performance with the original models, offering a promising solution for secure on-device model inference.
Abstract:On-device machine learning (ML) is quickly gaining popularity among mobile apps. It allows offline model inference while preserving user privacy. However, ML models, considered as core intellectual properties of model owners, are now stored on billions of untrusted devices and subject to potential thefts. Leaked models can cause both severe financial loss and security consequences. This paper presents the first empirical study of ML model protection on mobile devices. Our study aims to answer three open questions with quantitative evidence: How widely is model protection used in apps? How robust are existing model protection techniques? How much can (stolen) models cost? To that end, we built a simple app analysis pipeline and analyzed 46,753 popular apps collected from the US and Chinese app markets. We identified 1,468 ML apps spanning all popular app categories. We found that, alarmingly, 41% of ML apps do not protect their models at all, which can be trivially stolen from app packages. Even for those apps that use model protection or encryption, we were able to extract the models from 66% of them via unsophisticated dynamic analysis techniques. The extracted models are mostly commercial products and used for face recognition, liveness detection, ID/bank card recognition, and malware detection. We quantitatively estimated the potential financial impact of a leaked model, which can amount to millions of dollars for different stakeholders. Our study reveals that on-device models are currently at high risk of being leaked; attackers are highly motivated to steal such models. Drawn from our large-scale study, we report our insights into this emerging security problem and discuss the technical challenges, hoping to inspire future research on robust and practical model protection for mobile devices.