Abstract:Deep neural networks (DNNs) are vulnerable to adversarial attacks. It is found empirically that adversarially robust generalization is crucial in establishing defense algorithms against adversarial attacks. Therefore, it is interesting to study the theoretical guarantee of robust generalization. This paper focuses on norm-based complexity, based on a PAC-Bayes approach (Neyshabur et al., 2017). The main challenge lies in extending the key ingredient, which is a weight perturbation bound in standard settings, to the robust settings. Existing attempts heavily rely on additional strong assumptions, leading to loose bounds. In this paper, we address this issue and provide a spectrally-normalized robust generalization bound for DNNs. Compared to existing bounds, our bound offers two significant advantages: Firstly, it does not depend on additional assumptions. Secondly, it is considerably tighter, aligning with the bounds of standard generalization. Therefore, our result provides a different perspective on understanding robust generalization: The mismatch terms between standard and robust generalization bounds shown in previous studies do not contribute to the poor robust generalization. Instead, these disparities solely due to mathematical issues. Finally, we extend the main result to adversarial robustness against general non-$\ell_p$ attacks and other neural network architectures.
Abstract:We present a distribution optimization framework that significantly improves confidence bounds for various risk measures compared to previous methods. Our framework encompasses popular risk measures such as the entropic risk measure, conditional value at risk (CVaR), spectral risk measure, distortion risk measure, equivalent certainty, and rank-dependent expected utility, which are well established in risk-sensitive decision-making literature. To achieve this, we introduce two estimation schemes based on concentration bounds derived from the empirical distribution, specifically using either the Wasserstein distance or the supremum distance. Unlike traditional approaches that add or subtract a confidence radius from the empirical risk measures, our proposed schemes evaluate a specific transformation of the empirical distribution based on the distance. Consequently, our confidence bounds consistently yield tighter results compared to previous methods. We further verify the efficacy of the proposed framework by providing tighter problem-dependent regret bound for the CVaR bandit.
Abstract:We study finite episodic Markov decision processes incorporating dynamic risk measures to capture risk sensitivity. To this end, we present two model-based algorithms applied to \emph{Lipschitz} dynamic risk measures, a wide range of risk measures that subsumes spectral risk measure, optimized certainty equivalent, distortion risk measures among others. We establish both regret upper bounds and lower bounds. Notably, our upper bounds demonstrate optimal dependencies on the number of actions and episodes, while reflecting the inherent trade-off between risk sensitivity and sample complexity. Additionally, we substantiate our theoretical results through numerical experiments.