Abstract:This paper focuses on discovering the impact of communication mode allocation on communication efficiency in the vehicle communication networks. To be specific, Markov decision process and reinforcement learning are applied to establish an agile adaptation mechanism for multi-mode communication devices according to the driving scenarios and business requirements. Then, Q-learning is used to train the agile adaptation reinforcement learning model and output the trained model. By learning the best actions to take in different states to maximize the cumulative reward, and avoiding the problem of poor adaptation effect caused by inaccurate delay measurement in unstable communication scenarios. The experiments show that the proposed scheme can quickly adapt to dynamic vehicle networking environment, while achieving high concurrency and communication efficiency.
Abstract:Ultra-reliability and low latency communication plays an important role in the fifth and sixth generation communication systems. Among the different research issues, scheduling as many users as possible to serve on the limited time-frequency resource is a crucial topic, with requirement of the maximum allowable transmission power and the minimum rate requirement of each user.We address it by proposing a mixed integer programming model, with objective function is maximizing the set cardinality of users instead of maximizing the system sum rate. Mathematical transformations and successive convex approximation are combined to solve the problem. Numerical results show that the proposed method achieves a considerable performance compared with exhaustive search method, but with lower computational complexity.