Abstract:Seeking high-quality neural latent representations to reveal the intrinsic correlation between neural activity and behavior or sensory stimulation has attracted much interest. Currently, some deep latent variable models rely on behavioral information (e.g., movement direction and position) as an aid to build expressive embeddings while being restricted by fixed time scales. Visual neural activity from passive viewing lacks clearly correlated behavior or task information, and high-dimensional visual stimulation leads to intricate neural dynamics. To cope with such conditions, we propose Time-Dependent SwapVAE, following the approach of separating content and style spaces in Swap-VAE, on the basis of which we introduce state variables to construct conditional distributions with temporal dependence for the above two spaces. Our model progressively generates latent variables along neural activity sequences, and we apply self-supervised contrastive learning to shape its latent space. In this way, it can effectively analyze complex neural dynamics from sequences of arbitrary length, even without task or behavioral data as auxiliary inputs. We compare TiDe-SwapVAE with alternative models on synthetic data and neural data from mouse visual cortex. The results show that our model not only accurately decodes complex visual stimuli but also extracts explicit temporal neural dynamics, demonstrating that it builds latent representations more relevant to visual stimulation.
Abstract:In the real world, visual stimuli received by the biological visual system are predominantly dynamic rather than static. A better understanding of how the visual cortex represents movie stimuli could provide deeper insight into the information processing mechanisms of the visual system. Although some progress has been made in modeling neural responses to natural movies with deep neural networks, the visual representations of static and dynamic information under such time-series visual stimuli remain to be further explored. In this work, considering abundant recurrent connections in the mouse visual system, we design a recurrent module based on the hierarchy of the mouse cortex and add it into Deep Spiking Neural Networks, which have been demonstrated to be a more compelling computational model for the visual cortex. Using Time-Series Representational Similarity Analysis, we measure the representational similarity between networks and mouse cortical regions under natural movie stimuli. Subsequently, we conduct a comparison of the representational similarity across recurrent/feedforward networks and image/video training tasks. Trained on the video action recognition task, recurrent SNN achieves the highest representational similarity and significantly outperforms feedforward SNN trained on the same task by 15% and the recurrent SNN trained on the image classification task by 8%. We investigate how static and dynamic representations of SNNs influence the similarity, as a way to explain the importance of these two forms of representations in biological neural coding. Taken together, our work is the first to apply deep recurrent SNNs to model the mouse visual cortex under movie stimuli and we establish that these networks are competent to capture both static and dynamic representations and make contributions to understanding the movie information processing mechanisms of the visual cortex.