Abstract:Index tuning is crucial for optimizing database performance by selecting optimal indexes based on workload. The key to this process lies in an accurate and efficient benefit estimator. Traditional methods relying on what-if tools often suffer from inefficiency and inaccuracy. In contrast, learning-based models provide a promising alternative but face challenges such as instability, lack of interpretability, and complex management. To overcome these limitations, we adopt a novel approach: quantifying the uncertainty in learning-based models' results, thereby combining the strengths of both traditional and learning-based methods for reliable index tuning. We propose Beauty, the first uncertainty-aware framework that enhances learning-based models with uncertainty quantification and uses what-if tools as a complementary mechanism to improve reliability and reduce management complexity. Specifically, we introduce a novel method that combines AutoEncoder and Monte Carlo Dropout to jointly quantify uncertainty, tailored to the characteristics of benefit estimation tasks. In experiments involving sixteen models, our approach outperformed existing uncertainty quantification methods in the majority of cases. We also conducted index tuning tests on six datasets. By applying the Beauty framework, we eliminated worst-case scenarios and more than tripled the occurrence of best-case scenarios.
Abstract:Collaborative perception enables agents to share complementary perceptual information with nearby agents. This would improve the perception performance and alleviate the issues of single-view perception, such as occlusion and sparsity. Most existing approaches mainly focus on single modality (especially LiDAR), and not fully exploit the superiority of multi-modal perception. We propose a collaborative perception paradigm, BM2CP, which employs LiDAR and camera to achieve efficient multi-modal perception. It utilizes LiDAR-guided modal fusion, cooperative depth generation and modality-guided intermediate fusion to acquire deep interactions among modalities of different agents, Moreover, it is capable to cope with the special case where one of the sensors, same or different type, of any agent is missing. Extensive experiments validate that our approach outperforms the state-of-the-art methods with 50X lower communication volumes in both simulated and real-world autonomous driving scenarios. Our code is available at https://github.com/byzhaoAI/BM2CP.