Abstract:Knowledge distillation is the process of transferring knowledge from a more powerful large model (teacher) to a simpler counterpart (student). Numerous current approaches involve the student imitating the knowledge of the teacher directly. However, redundancy still exists in the learned representations through these prevalent methods, which tend to learn each spatial location's features indiscriminately. To derive a more compact representation (concept feature) from the teacher, inspired by human cognition, we suggest an innovative method, termed Generative Denoise Distillation (GDD), where stochastic noises are added to the concept feature of the student to embed them into the generated instance feature from a shallow network. Then, the generated instance feature is aligned with the knowledge of the instance from the teacher. We extensively experiment with object detection, instance segmentation, and semantic segmentation to demonstrate the versatility and effectiveness of our method. Notably, GDD achieves new state-of-the-art performance in the tasks mentioned above. We have achieved substantial improvements in semantic segmentation by enhancing PspNet and DeepLabV3, both of which are based on ResNet-18, resulting in mIoU scores of 74.67 and 77.69, respectively, surpassing their previous scores of 69.85 and 73.20 on the Cityscapes dataset of 20 categories. The source code is available at https://github.com/ZhgLiu/GDD.
Abstract:Most unsupervised image anomaly localization methods suffer from overgeneralization because of the high generalization abilities of convolutional neural networks, leading to unreliable predictions. To mitigate the overgeneralization, this study proposes to collaboratively optimize normal and abnormal feature distributions with the assistance of synthetic anomalies, namely collaborative discrepancy optimization (CDO). CDO introduces a margin optimization module and an overlap optimization module to optimize the two key factors determining the localization performance, i.e., the margin and the overlap between the discrepancy distributions (DDs) of normal and abnormal samples. With CDO, a large margin and a small overlap between normal and abnormal DDs are obtained, and the prediction reliability is boosted. Experiments on MVTec2D and MVTec3D show that CDO effectively mitigates the overgeneralization and achieves great anomaly localization performance with real-time computation efficiency. A real-world automotive plastic parts inspection application further demonstrates the capability of the proposed CDO. Code is available on https://github.com/caoyunkang/CDO.