Abstract:Inspired by the software industry's practice of offering different editions or versions of a product tailored to specific user groups or use cases, we propose a novel task, namely, training-free editioning, for text-to-image models. Specifically, we aim to create variations of a base text-to-image model without retraining, enabling the model to cater to the diverse needs of different user groups or to offer distinct features and functionalities. To achieve this, we propose that different editions of a given text-to-image model can be formulated as concept subspaces in the latent space of its text encoder (e.g., CLIP). In such a concept subspace, all points satisfy a specific user need (e.g., generating images of a cat lying on the grass/ground/falling leaves). Technically, we apply Principal Component Analysis (PCA) to obtain the desired concept subspaces from representative text embedding that correspond to a specific user need or requirement. Projecting the text embedding of a given prompt into these low-dimensional subspaces enables efficient model editioning without retraining. Intuitively, our proposed editioning paradigm enables a service provider to customize the base model into its "cat edition" (or other editions) that restricts image generation to cats, regardless of the user's prompt (e.g., dogs, people, etc.). This introduces a new dimension for product differentiation, targeted functionality, and pricing strategies, unlocking novel business models for text-to-image generators. Extensive experimental results demonstrate the validity of our approach and its potential to enable a wide range of customized text-to-image model editions across various domains and applications.