Abstract:As AI systems become pervasive, grounding their behavior in human values is critical. Prior work suggests that language models (LMs) exhibit limited inherent moral reasoning, leading to calls for explicit moral teaching. However, constructing ground truth data for moral evaluation is difficult given plural frameworks and pervasive biases. We investigate unsupervised elicitation as an alternative, asking whether pretrained (base) LMs possess intrinsic moral reasoning capability that can be surfaced without human supervision. Using the Internal Coherence Maximization (ICM) algorithm across three benchmark datasets and four LMs, we test whether ICM can reliably label moral judgments, generalize across moral frameworks, and mitigate social bias. Results show that ICM outperforms all pre-trained and chatbot baselines on the Norm Bank and ETHICS benchmarks, while fine-tuning on ICM labels performs on par with or surpasses those of human labels. Across theoretically motivated moral frameworks, ICM yields its largest relative gains on Justice and Commonsense morality. Furthermore, although chatbot LMs exhibit social bias failure rates comparable to their pretrained ones, ICM reduces such errors by more than half, with the largest improvements in race, socioeconomic status, and politics. These findings suggest that pretrained LMs possess latent moral reasoning capacities that can be elicited through unsupervised methods like ICM, providing a scalable path for AI alignment.
Abstract:Large language models (LLMs) have traditionally relied on static training data, limiting their knowledge to fixed snapshots. Recent advancements, however, have equipped LLMs with web browsing capabilities, enabling real time information retrieval and multi step reasoning over live web content. While prior studies have demonstrated LLMs ability to access and analyze websites, their capacity to directly retrieve and analyze social media data remains unexplored. Here, we evaluate whether web browsing LLMs can infer demographic attributes of social media users given only their usernames. Using a synthetic dataset of 48 X (Twitter) accounts and a survey dataset of 1,384 international participants, we show that these models can access social media content and predict user demographics with reasonable accuracy. Analysis of the synthetic dataset further reveals how LLMs parse and interpret social media profiles, which may introduce gender and political biases against accounts with minimal activity. While this capability holds promise for computational social science in the post API era, it also raises risks of misuse particularly in information operations and targeted advertising underscoring the need for safeguards. We recommend that LLM providers restrict this capability in public facing applications, while preserving controlled access for verified research purposes.
Abstract:This study examines the performance of open-source Large Language Models (LLMs) in text annotation tasks and compares it with proprietary models like ChatGPT and human-based services such as MTurk. While prior research demonstrated the high performance of ChatGPT across numerous NLP tasks, open-source LLMs like HugginChat and FLAN are gaining attention for their cost-effectiveness, transparency, reproducibility, and superior data protection. We assess these models using both zero-shot and few-shot approaches and different temperature parameters across a range of text annotation tasks. Our findings show that while ChatGPT achieves the best performance in most tasks, open-source LLMs not only outperform MTurk but also demonstrate competitive potential against ChatGPT in specific tasks.