Abstract:Diffusion models have quickly become the state-of-the-art for generation tasks across many different data modalities. An important ability of diffusion models is the ability to encode samples from the data distribution back into the sampling prior distribution. This is useful for performing alterations to real data samples along with guided generation via the continuous adjoint equations. We propose an algebraically reversible solver for diffusion SDEs that can exactly invert real data samples into the prior distribution.
Abstract:Training-free guided generation is a widely used and powerful technique that allows the end user to exert further control over the generative process of diffusion models. In this work, we explore the guided generation from the perspective of optimizing the solution trajectory of a neural differential equation in a greedy manner. We present such a strategy as a unifying view on training-free guidance by showing that the greedy strategy is a first-order discretization of end-to-end optimization techniques. We show that a greedy guidance strategy makes good decisions and compare it to a guidance strategy using the ideal gradients found via the continuous adjoint equations. We then show how other popular training-free guidance strategies can be viewed in a unified manner from this perspective.
Abstract:The optimization of the latents and parameters of diffusion models with respect to some differentiable metric defined on the output of the model is a challenging and complex problem. The sampling for diffusion models is done by solving either the probability flow ODE or diffusion SDE wherein a neural network approximates the score function or related quantity, allowing a numerical ODE/SDE solver to be used. However, na\"ive backpropagation techniques are memory intensive, requiring the storage of all intermediate states, and face additional complexity in handling the injected noise from the diffusion term of the diffusion SDE. We propose a novel method based on the stochastic adjoint sensitivity method to calculate the gradientwith respect to the initial noise, conditional information, and model parameters by solving an additional SDE whose solution is the gradient of the diffusion SDE. We exploit the unique construction of diffusion SDEs to further simplify the formulation of the adjoint diffusion SDE and use a change-of-variables to simplify the solution to an exponentially weighted integral. Using this formulation we derive a custom solver for the adjoint SDE as well as the simpler adjoint ODE. The proposed adjoint diffusion solvers can efficiently compute the gradients for both the probability flow ODE and diffusion SDE for latents and parameters of the model. Lastly, we demonstrate the effectiveness of the adjoint diffusion solvers onthe face morphing problem.
Abstract:Morphing attacks are an emerging threat to state-of-the-art Face Recognition (FR) systems, which aim to create a single image that contains the biometric information of multiple identities. Diffusion Morphs (DiM) are a recently proposed morphing attack that has achieved state-of-the-art performance for representation-based morphing attacks. However, none of the existing research on DiMs have leveraged the iterative nature of DiMs and left the DiM model as a black box, treating it no differently than one would a Generative Adversarial Network (GAN) or Varational AutoEncoder (VAE). We propose a greedy strategy on the iterative sampling process of DiM models which searches for an optimal step guided by an identity-based heuristic function. We compare our proposed algorithm against ten other state-of-the-art morphing algorithms using the open-source SYN-MAD 2022 competition dataset. We find that our proposed algorithm is unreasonably effective, fooling all of the tested FR systems with an MMPMR of 100%, outperforming all other morphing algorithms compared.
Abstract:Face morphing attacks present an emerging threat to the face recognition system. On top of that, printing and scanning the morphed images could obscure the artifacts generated during the morphing process, which makes morphed image detection even harder. In this work, we investigate the impact that printing and scanning has on morphing attacks through a series of heterogeneous tests. Our experiments show that we can increase the possibility of a false match by up to 5.64% for DiM and 16.00% for StyleGAN2 when providing an image that has been printed and scanned, regardless it is morphed or bona fide, to a Face Recognition (FR) system. Likewise, using Frechet Inception Distance (FID) metric, strictly print-scanned morph attacks performed on average 9.185% stronger than non-print-scanned digital morphs.