Abstract:Current random feature models typically rely on fixed activation functions, limiting their ability to capture diverse patterns in data. To address this, we introduce the Random Feature model with Learnable Activation Functions (RFLAF), a novel model that significantly enhances the expressivity and interpretability of traditional random feature (RF) models. We begin by studying the RF model with a single radial basis function, where we discover a new kernel and provide the first theoretical analysis on it. By integrating the basis functions with learnable weights, we show that RFLAF can represent a broad class of random feature models whose activation functions belong in $C_c(\mathbb{R})$. Theoretically, we prove that the model requires only about twice the parameter number compared to a traditional RF model to achieve the significant leap in expressivity. Experimentally, RFLAF demonstrates two key advantages: (1) it performs better across various tasks compared to traditional RF model with the same number of parameters, and (2) the optimized weights offer interpretability, as the learned activation function can be directly inferred from these weights. Our model paves the way for developing more expressive and interpretable frameworks within random feature models.