Abstract:Human-centered AI (HCAI), as a design philosophy, advocates prioritizing humans in designing, developing, and deploying intelligent systems, aiming to maximize the benefits of AI technology to humans and avoid its potential adverse effects. While HCAI has gained momentum, the lack of guidance on methodology in its implementation makes its adoption challenging. After assessing the needs for a methodological framework for HCAI, this paper first proposes a comprehensive and interdisciplinary HCAI methodological framework integrated with seven components, including design goals, design principles, implementation approaches, design paradigms, interdisciplinary teams, methods, and processes. THe implications of the framework are also discussed. This paper also presents a "three-layer" approach to facilitate the implementation of the framework. We believe the proposed framework is systematic and executable, which can overcome the weaknesses in current frameworks and the challenges currently faced in implementing HCAI. Thus, the framework can help put it into action to develop, transfer, and implement HCAI in practice, eventually enabling the design, development, and deployment of HCAI-based intelligent systems.
Abstract:Human-centered AI (HCAI) is a design philosophy that advocates prioritizing humans in designing, developing, and deploying intelligent systems, aiming to maximize the benefits of AI to humans and avoid potential adverse impacts. While HCAI continues to influence, the lack of guidance on methodology in practice makes its adoption challenging. This paper proposes a comprehensive HCAI framework based on our previous work with integrated components, including design goals, design principles, implementation approaches, interdisciplinary teams, HCAI methods, and HCAI processes. This paper also presents a "three-layer" approach to facilitate the implementation of the framework. We believe this systematic and executable framework can overcome the weaknesses in current HCAI frameworks and the challenges currently faced in practice, putting it into action to enable HCAI further.
Abstract:The rapid advancements in artificial intelligence (AI) have led to a growing trend of human-AI teaming (HAT) in various fields. As machines continue to evolve from mere automation to a state of autonomy, they are increasingly exhibiting unexpected behaviors and human-like cognitive/intelligent capabilities, including situation awareness (SA). This shift has the potential to enhance the performance of mixed human-AI teams over all-human teams, underscoring the need for a better understanding of the dynamic SA interactions between humans and machines. To this end, we provide a review of leading SA theoretical models and a new framework for SA in the HAT context based on the key features and processes of HAT. The Agent Teaming Situation Awareness (ATSA) framework unifies human and AI behavior, and involves bidirectional, and dynamic interaction. The framework is based on the individual and team SA models and elaborates on the cognitive mechanisms for modeling HAT. Similar perceptual cycles are adopted for the individual (including both human and AI) and the whole team, which is tailored to the unique requirements of the HAT context. ATSA emphasizes cohesive and effective HAT through structures and components, including teaming understanding, teaming control, and the world, as well as adhesive transactive part. We further propose several future research directions to expand on the distinctive contributions of ATSA and address the specific and pressing next steps.
Abstract:Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems. HAT recognizes that AI will function as a teammate instead of simply a tool in collaboration with humans. Effective human-AI teams need to be capable of taking advantage of the unique abilities of both humans and AI while overcoming the known challenges and limitations of each member, augmenting human capabilities, and raising joint performance beyond that of either entity. The National AI Research and Strategic Plan 2023 update has recognized that research programs focusing primarily on the independent performance of AI systems generally fail to consider the functionality that AI must provide within the context of dynamic, adaptive, and collaborative teams and calls for further research on human-AI teaming and collaboration. However, there has been debate about whether AI can work as a teammate with humans. The primary concern is that adopting the "teaming" paradigm contradicts the human-centered AI (HCAI) approach, resulting in humans losing control of AI systems. This article further analyzes the HAT paradigm and the debates. Specifically, we elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS) and apply it to represent HAT under the HCAI umbrella. We believe that HAIJCS may help adopt HAI while enabling HCAI. The implications and future work for HAIJCS are also discussed. Insights: AI has led to the emergence of a new form of human-machine relationship: human-AI teaming (HAT), a paradigmatic shift in human-AI systems; We must follow a human-centered AI (HCAI) approach when applying HAT as a new design paradigm; We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT for developing effective human-AI teaming
Abstract:While AI has benefited humans, it may also harm humans if not appropriately developed. We conducted a literature review of current related work in developing AI systems from an HCI perspective. Different from other approaches, our focus is on the unique characteristics of AI technology and the differences between non-AI computing systems and AI systems. We further elaborate on the human-centered AI (HCAI) approach that we proposed in 2019. Our review and analysis highlight unique issues in developing AI systems which HCI professionals have not encountered in non-AI computing systems. To further enable the implementation of HCAI, we promote the research and application of human-AI interaction (HAII) as an interdisciplinary collaboration. There are many opportunities for HCI professionals to play a key role to make unique contributions to the main HAII areas as we identified. To support future HCI practice in the HAII area, we also offer enhanced HCI methods and strategic recommendations. In conclusion, we believe that promoting the HAII research and application will further enable the implementation of HCAI, enabling HCI professionals to address the unique issues of AI systems and develop human-centered AI systems.