Abstract:Testing controllers in safety-critical systems is vital for ensuring their safety and preventing failures. In this paper, we address the falsification problem within learning-based closed-loop control systems through simulation. This problem involves the identification of counterexamples that violate system safety requirements and can be formulated as an optimization task based on these requirements. Using full-fidelity simulator data in this optimization problem can be computationally expensive. To improve efficiency, we propose a multi-fidelity Bayesian optimization falsification framework that harnesses simulators with varying levels of accuracy. Our proposed framework can transition between different simulators and establish meaningful relationships between them. Through multi-fidelity Bayesian optimization, we determine both the optimal system input likely to be a counterexample and the appropriate fidelity level for assessment. We evaluated our approach across various Gym environments, each featuring different levels of fidelity. Our experiments demonstrate that multi-fidelity Bayesian optimization is more computationally efficient than full-fidelity Bayesian optimization and other baseline methods in detecting counterexamples. A Python implementation of the algorithm is available at https://github.com/SAILRIT/MFBO_Falsification.
Abstract:The primary goal of reinforcement learning is to develop decision-making policies that prioritize optimal performance without considering risk or safety. In contrast, safe reinforcement learning aims to mitigate or avoid unsafe states. This paper presents a risk-sensitive Q-learning algorithm that leverages optimal transport theory to enhance the agent safety. By integrating optimal transport into the Q-learning framework, our approach seeks to optimize the policy's expected return while minimizing the Wasserstein distance between the policy's stationary distribution and a predefined risk distribution, which encapsulates safety preferences from domain experts. We validate the proposed algorithm in a Gridworld environment. The results indicate that our method significantly reduces the frequency of visits to risky states and achieves faster convergence to a stable policy compared to the traditional Q-learning algorithm.
Abstract:Simulation-based falsification is a practical testing method to increase confidence that the system will meet safety requirements. Because full-fidelity simulations can be computationally demanding, we investigate the use of simulators with different levels of fidelity. As a first step, we express the overall safety specification in terms of environmental parameters and structure this safety specification as an optimization problem. We propose a multi-fidelity falsification framework using Bayesian optimization, which is able to determine at which level of fidelity we should conduct a safety evaluation in addition to finding possible instances from the environment that cause the system to fail. This method allows us to automatically switch between inexpensive, inaccurate information from a low-fidelity simulator and expensive, accurate information from a high-fidelity simulator in a cost-effective way. Our experiments on various environments in simulation demonstrate that multi-fidelity Bayesian optimization has falsification performance comparable to single-fidelity Bayesian optimization but with much lower cost.