Abstract:The Global Precedence Effect (GPE) suggests that the processing of global properties of a visual stimulus precedes the processing of local properties. The generality of this theory was argued for four decades during different known Perceptual Field Variables. The effect size of various PFVs, regarding the findings during these four decades, were pooled in our recent meta-analysis study. Pursuing the study, in the present paper, we explore the effects of Congruency, Size, and Sparsity and their interaction on global advantage in two different experiments with different task paradigms; Matching judgment and Similarity judgment. Upon results of these experiments, Congruency and Size have significant effects and Sparsity has small effects. Also, the task paradigm and its interaction with other PFVs are shown significant effects in this study, which shows the prominence of the role of task paradigms in evaluating PFVs' effects on GPE. Also, we found that the effects of these parameters were not specific to the special condition that individuals were instructed to retinal stabilize. So, the experiments were more extendible to daily human behavior.
Abstract:Convolutional Neural Networks (CNNs) have achieved outstanding performance on image processing challenges. Actually, CNNs imitate the typically developed human brain structures at the micro-level (Artificial neurons). At the same time, they distance themselves from imitating natural visual perception in humans at the macro architectures (high-level cognition). Recently it has been investigated that CNNs are highly biased toward local features and fail to detect the global aspects of their input. Nevertheless, the literature offers limited clues on this problem. To this end, we propose a simple yet effective solution inspired by the unconscious behavior of the human pupil. We devise a simple module called Global Advantage Stream (GAS) to learn and capture the holistic features of input samples (i.e., the global features). Then, the GAS features were combined with a CNN network as a plug-and-play component called the Global/Local Processing (GLP) model. The experimental results confirm that this stream improves the accuracy with an insignificant additional computational/temporal load and makes the network more robust to adversarial attacks. Furthermore, investigating the interpretation of the model shows that it learns a more holistic representation similar to the perceptual system of healthy humans