Abstract:The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.
Abstract:Federated learning (FL) is a distributed learning technique that trains a shared model over distributed data in a privacy-preserving manner. Unfortunately, FL's performance degrades when there is (i) variability in client characteristics in terms of computational and memory resources (system heterogeneity) and (ii) non-IID data distribution across clients (statistical heterogeneity). For example, slow clients get dropped in FL schemes, such as Federated Averaging (FedAvg), which not only limits overall learning but also biases results towards fast clients. We propose FedPrune; a system that tackles this challenge by pruning the global model for slow clients based on their device characteristics. By doing so, slow clients can train a small model quickly and participate in FL which increases test accuracy as well as fairness. By using insights from Central Limit Theorem, FedPrune incorporates a new aggregation technique that achieves robust performance over non-IID data. Experimental evaluation shows that Fed- Prune provides robust convergence and better fairness compared to Federated Averaging.