Abstract:In some applications, acquiring covariates comes at a cost which is not negligible. For example in the medical domain, in order to classify whether a patient has diabetes or not, measuring glucose tolerance can be expensive. Assuming that the cost of each covariate, and the cost of misclassification can be specified by the user, our goal is to minimize the (expected) total cost of classification, i.e. the cost of misclassification plus the cost of the acquired covariates. We formalize this optimization goal using the (conditional) Bayes risk and describe the optimal solution using a recursive procedure. Since the procedure is computationally infeasible, we consequently introduce two assumptions: (1) the optimal classifier can be represented by a generalized additive model, (2) the optimal sets of covariates are limited to a sequence of sets of increasing size. We show that under these two assumptions, a computationally efficient solution exists. Furthermore, on several medical datasets, we show that the proposed method achieves in most situations the lowest total costs when compared to various previous methods. Finally, we weaken the requirement on the user to specify all misclassification costs by allowing the user to specify the minimally acceptable recall (target recall). Our experiments confirm that the proposed method achieves the target recall while minimizing the false discovery rate and the covariate acquisition costs better than previous methods.
Abstract:Clustering, like covariate selection for classification, is an important step to understand and interpret the data. However, clustering of covariates is often performed independently of the classification step, which can lead to undesirable clustering results. Therefore, we propose a method that can cluster covariates while taking into account class label information of samples. We formulate the problem as a convex optimization problem which uses both, a-priori similarity information between covariates, and information from class-labeled samples. Like convex clustering [Chi and Lange, 2015], the proposed method offers a unique global minima making it insensitive to initialization. In order to solve the convex problem, we propose a specialized alternating direction method of multipliers (ADMM), which scales up to several thousands of variables. Furthermore, in order to circumvent computationally expensive cross-validation, we propose a model selection criterion based on approximate marginal likelihood estimation. Experiments on synthetic and real data confirm the usefulness of the proposed clustering method and the selection criterion.