Abstract:Fall detection based on embedded sensor is a practical and popular research direction in recent years. In terms of a specific application: fall detection methods based upon physics sensors such as [gyroscope and accelerator] have been exploited using traditional hand crafted features and feed them in machine learning models like Markov chain or just threshold based classification methods. In this paper, we build a complete system named TSFallDetect including data receiving device based on embedded sensor, mobile deep-learning model deploying platform, and a simple server, which will be used to gather models and data for future expansion. On the other hand, we exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors. We make a empirical study based on existing datasets and our datasets collected from our system separately, which shows that the deep-learning model has more potential advantage than other traditional methods, and we proposed a new deep-learning model based on the time series data to predict the fall, and it may be superior to other sequential models in this particular field.
Abstract:Abstract Meaning Representation (AMR) is a graphical meaning representation language designed to represent propositional information about argument structure. However, at present it is unable to satisfyingly represent non-veridical intensional contexts, often licensing inappropriate inferences. In this paper, we show how to resolve the problem of non-veridicality without appealing to layered graphs through a mapping from AMRs into Simply-Typed Lambda Calculus (STLC). At least for some cases, this requires the introduction of a new role :content which functions as an intensional operator. The translation proposed is inspired by the formal linguistics literature on the event semantics of attitude reports. Next, we address the interaction of quantifier scope and intensional operators in so-called de re/de dicto ambiguities. We adopt a scope node from the literature and provide an explicit multidimensional semantics utilizing Cooper storage which allows us to derive the de re and de dicto scope readings as well as intermediate scope readings which prove difficult for accounts without a scope node.