Abstract:The Human visual perception of the world is of a large fixed image that is highly detailed and sharp. However, receptor density in the retina is not uniform: a small central region called the fovea is very dense and exhibits high resolution, whereas a peripheral region around it has much lower spatial resolution. Thus, contrary to our perception, we are only able to observe a very small region around the line of sight with high resolution. The perception of a complete and stable view is aided by an attention mechanism that directs the eyes to the numerous points of interest within the scene. The eyes move between these targets in quick, unconscious movements, known as "saccades". Once a target is centered at the fovea, the eyes fixate for a fraction of a second while the visual system extracts the necessary information. An artificial visual system was built based on a fully recurrent neural network set within a reinforcement learning protocol, and learned to attend to regions of interest while solving a classification task. The model is consistent with several experimentally observed phenomena, and suggests novel predictions.
Abstract:The process of dynamic state estimation (filtering) based on point process observations is in general intractable. Numerical sampling techniques are often practically useful, but lead to limited conceptual insight about optimal encoding/decoding strategies, which are of significant relevance to Computational Neuroscience. We develop an analytically tractable Bayesian approximation to optimal filtering based on point process observations, which allows us to introduce distributional assumptions about sensor properties, that greatly facilitate the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Numerical comparison with particle filtering demonstrate the quality of the approximation. The analytic framework leads to insights which are difficult to obtain from numerical algorithms, and is consistent with biological observations about the distribution of sensory cells' tuning curve centers.
Abstract:The process of dynamic state estimation (filtering) based on point process observations is in general intractable. Numerical sampling techniques are often practically useful, but lead to limited conceptual insight about optimal encoding/decoding strategies, which are of significant relevance to Computational Neuroscience. We develop an analytically tractable Bayesian approximation to optimal filtering based on point process observations, which allows us to introduce distributional assumptions about sensory cell properties, that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. The analytic framework leads to insights which are difficult to obtain from numerical algorithms, and is consistent with experiments about the distribution of tuning curve centers. Interestingly, we find that the information gained from the absence of spikes may be crucial to performance.