California Institute for Telecommunications and Information Technology
Abstract:Human-Robot Collaboration (HRC) is vital in Industry 4.0, using sensors, digital twins, collaborative robots (cobots), and intention-recognition models to have efficient manufacturing processes. However, Concept Drift is a significant challenge, where robots struggle to adapt to new environments. We address concept drift by integrating Adaptive Intelligence and self-labeling (SLB) to improve the resilience of intention-recognition in an HRC system. Our methodology begins with data collection using cameras and weight sensors, which is followed by annotation of intentions and state changes. Then we train various deep learning models with different preprocessing techniques for recognizing and predicting the intentions. Additionally, we developed a custom state detection algorithm for enhancing the accuracy of SLB, offering precise state-change definitions and timestamps to label intentions. Our results show that the MViT2 model with skeletal posture preprocessing achieves an accuracy of 83% on our data environment, compared to the 79% accuracy of MViT2 without skeleton posture extraction. Additionally, our SLB mechanism achieves a labeling accuracy of 91%, reducing a significant amount of time that would've been spent on manual annotation. Lastly, we observe swift scaling of model performance that combats concept drift by fine tuning on different increments of self-labeled data in a shifted domain that has key differences from the original training environment.. This study demonstrates the potential for rapid deployment of intelligent cobots in manufacturing through the steps shown in our methodology, paving a way for more adaptive and efficient HRC systems.
Abstract:Machine Learning (ML) has been demonstrated to improve productivity in many manufacturing applications. To host these ML applications, several software and Industrial Internet of Things (IIoT) systems have been proposed for manufacturing applications to deploy ML applications and provide real-time intelligence. Recently, an interactive causality enabled self-labeling method has been proposed to advance adaptive ML applications in cyber-physical systems, especially manufacturing, by automatically adapting and personalizing ML models after deployment to counter data distribution shifts. The unique features of the self-labeling method require a novel software system to support dynamism at various levels. This paper proposes the AdaptIoT system, comprised of an end-to-end data streaming pipeline, ML service integration, and an automated self-labeling service. The self-labeling service consists of causal knowledge bases and automated full-cycle self-labeling workflows to adapt multiple ML models simultaneously. AdaptIoT employs a containerized microservice architecture to deliver a scalable and portable solution for small and medium-sized manufacturers. A field demonstration of a self-labeling adaptive ML application is conducted with a makerspace and shows reliable performance.
Abstract:Adaptive machine learning (ML) aims to allow ML models to adapt to ever-changing environments with potential concept drift after model deployment. Traditionally, adaptive ML requires a new dataset to be manually labeled to tailor deployed models to altered data distributions. Recently, an interactive causality based self-labeling method was proposed to autonomously associate causally related data streams for domain adaptation, showing promising results compared to traditional feature similarity-based semi-supervised learning. Several unanswered research questions remain, including self-labeling's compatibility with multivariate causality and the quantitative analysis of the auxiliary models used in the self-labeling. The auxiliary models, the interaction time model (ITM) and the effect state detector (ESD), are vital to the success of self-labeling. This paper further develops the self-labeling framework and its theoretical foundations to address these research questions. A framework for the application of self-labeling to multivariate causal graphs is proposed using four basic causal relationships, and the impact of non-ideal ITM and ESD performance is analyzed. A simulated experiment is conducted based on a multivariate causal graph, validating the proposed theory.