Abstract:Machine Learning (ML) has been demonstrated to improve productivity in many manufacturing applications. To host these ML applications, several software and Industrial Internet of Things (IIoT) systems have been proposed for manufacturing applications to deploy ML applications and provide real-time intelligence. Recently, an interactive causality enabled self-labeling method has been proposed to advance adaptive ML applications in cyber-physical systems, especially manufacturing, by automatically adapting and personalizing ML models after deployment to counter data distribution shifts. The unique features of the self-labeling method require a novel software system to support dynamism at various levels. This paper proposes the AdaptIoT system, comprised of an end-to-end data streaming pipeline, ML service integration, and an automated self-labeling service. The self-labeling service consists of causal knowledge bases and automated full-cycle self-labeling workflows to adapt multiple ML models simultaneously. AdaptIoT employs a containerized microservice architecture to deliver a scalable and portable solution for small and medium-sized manufacturers. A field demonstration of a self-labeling adaptive ML application is conducted with a makerspace and shows reliable performance.