Abstract:In this study, ChatGPT is utilized to create streamlined models that generate easily interpretable features. These features are then used to evaluate financial outcomes from earnings calls. We detail a training approach that merges knowledge distillation and transfer learning, resulting in lightweight topic and sentiment classification models without significant loss in accuracy. These models are assessed through a dataset annotated by experts. The paper also delves into two practical case studies, highlighting how the generated features can be effectively utilized in quantitative investing scenarios.