Abstract:There are unique challenges to developing item recommender systems for e-commerce platforms like eBay due to sparse data and diverse user interests. While rich user-item interactions are important, eBay's data sparsity exceeds other e-commerce sites by an order of magnitude. To address this challenge, we propose CoActionGraphRec (CAGR), a text based two-tower deep learning model (Item Tower and User Tower) utilizing co-action graph layers. In order to enhance user and item representations, a graph-based solution tailored to eBay's environment is utilized. For the Item Tower, we represent each item using its co-action items to capture collaborative signals in a co-action graph that is fully leveraged by the graph neural network component. For the User Tower, we build a fully connected graph of each user's behavior sequence, with edges encoding pairwise relationships. Furthermore, an explicit interaction module learns representations capturing behavior interactions. Extensive offline and online A/B test experiments demonstrate the effectiveness of our proposed approach and results show improved performance over state-of-the-art methods on key metrics.
Abstract:Recommender systems are an essential component of e-commerce marketplaces, helping consumers navigate massive amounts of inventory and find what they need or love. In this paper, we present an approach for generating personalized item recommendations in an e-commerce marketplace by learning to embed items and users in the same vector space. In order to alleviate the considerable cold-start problem present in large marketplaces, item and user embeddings are computed using content features and multi-modal onsite user activity respectively. Data ablation is incorporated into the offline model training process to improve the robustness of the production system. In offline evaluation using a dataset collected from eBay traffic, our approach was able to improve the Recall@k metric over the Recently-Viewed-Item (RVI) method. This approach to generating personalized recommendations has been launched to serve production traffic, and the corresponding scalable engineering architecture is also presented. Initial A/B test results show that compared to the current personalized recommendation module in production, the proposed method increases the surface rate by $\sim$6\% to generate recommendations for 90\% of listing page impressions.