Abstract:Riemannian flow matching (RFM) extends flow-based generative modeling to data supported on manifolds by learning a time-dependent tangent vector field whose flow-ODE transports a simple base distribution to the data law. We develop a nonasymptotic Total Variation (TV) convergence analysis for RFM samplers that use a learned vector field together with Euler discretization on manifolds. Our key technical ingredient is a differential inequality governing the evolution of TV between two manifold ODE flows, which expresses the time-derivative of TV through the divergence of the vector-field mismatch and the score of the reference flow; controlling these terms requires establishing new bounds that explicitly account for parallel transport and curvature. Under smoothness assumptions on the population flow-matching field and either uniform (compact manifolds) or mean-square (Hadamard manifolds) approximation guarantees for the learned field, we obtain explicit bounds of the form $\mathrm{TV}\le C_{\mathrm{Lip}}\,h + C_{\varepsilon}\,\varepsilon$ (with an additional higher-order $\varepsilon^2$ term on compact manifolds), cleanly separating numerical discretization and learning errors. Here, $h$ is the step-size and $\varepsilon$ is the target accuracy. Instantiations yield \emph{explicit} polynomial iteration complexities on the hypersphere $S^d$, and on the SPD$(n)$ manifolds under mild moment conditions.
Abstract:We introduce the Riemannian Proximal Sampler, a method for sampling from densities defined on Riemannian manifolds. The performance of this sampler critically depends on two key oracles: the Manifold Brownian Increments (MBI) oracle and the Riemannian Heat-kernel (RHK) oracle. We establish high-accuracy sampling guarantees for the Riemannian Proximal Sampler, showing that generating samples with $\varepsilon$-accuracy requires $O(\log(1/\varepsilon))$ iterations in Kullback-Leibler divergence assuming access to exact oracles and $O(\log^2(1/\varepsilon))$ iterations in the total variation metric assuming access to sufficiently accurate inexact oracles. Furthermore, we present practical implementations of these oracles by leveraging heat-kernel truncation and Varadhan's asymptotics. In the latter case, we interpret the Riemannian Proximal Sampler as a discretization of the entropy-regularized Riemannian Proximal Point Method on the associated Wasserstein space. We provide preliminary numerical results that illustrate the effectiveness of the proposed methodology.