Abstract:EasyVis2 is a system designed for hands-free, real-time 3D visualization during laparoscopic surgery. It incorporates a surgical trocar equipped with a set of micro-cameras, which are inserted into the body cavity to provide an expanded field of view and a 3D perspective of the surgical procedure. A sophisticated deep neural network algorithm, YOLOv8-Pose, is tailored to estimate the position and orientation of surgical instruments in each individual camera view. Subsequently, 3D surgical tool pose estimation is performed using associated 2D key points across multiple views. This enables the rendering of a 3D surface model of the surgical tools overlaid on the observed background scene for real-time visualization. In this study, we explain the process of developing a training dataset for new surgical tools to customize YoLOv8-Pose while minimizing labeling efforts. Extensive experiments were conducted to compare EasyVis2 with the original EasyVis, revealing that, with the same number of cameras, the new system improves 3D reconstruction accuracy and reduces computation time. Additionally, experiments with 3D rendering on real animal tissue visually demonstrated the distance between surgical tools and tissues by displaying virtual side views, indicating potential applications in real surgeries in the future.
Abstract:We developed a shoe-mounted gait monitoring system capable of tracking up to 17 gait parameters, including gait length, step time, stride velocity, and others. The system employs a stereo camera mounted on one shoe to track a marker placed on the opposite shoe, enabling the estimation of spatial gait parameters. Additionally, a Force Sensitive Resistor (FSR) affixed to the heel of the shoe, combined with a custom-designed algorithm, is utilized to measure temporal gait parameters. Through testing on multiple participants and comparison with the gait mat, the proposed gait monitoring system exhibited notable performance, with the accuracy of all measured gait parameters exceeding 93.61%. The system also demonstrated a low drift of 4.89% during long-distance walking. A gait identification task conducted on participants using a trained Transformer model achieved 95.7% accuracy on the dataset collected by the proposed system, demonstrating that our hardware has the potential to collect long-sequence gait data suitable for integration with current Large Language Models (LLMs). The system is cost-effective, user-friendly, and well-suited for real-life measurements.