Abstract:Several recent studies advocate the use of spectral discriminators, which evaluate the Fourier spectra of images for generative modeling. However, the effectiveness of the spectral discriminators is not well interpreted yet. We tackle this issue by examining the spectral discriminators in the context of perceptual image super-resolution (i.e., GAN-based SR), as SR image quality is susceptible to spectral changes. Our analyses reveal that the spectral discriminator indeed performs better than the ordinary (a.k.a. spatial) discriminator in identifying the differences in the high-frequency range; however, the spatial discriminator holds an advantage in the low-frequency range. Thus, we suggest that the spectral and spatial discriminators shall be used simultaneously. Moreover, we improve the spectral discriminators by first calculating the patch-wise Fourier spectrum and then aggregating the spectra by Transformer. We verify the effectiveness of the proposed method twofold. On the one hand, thanks to the additional spectral discriminator, our obtained SR images have their spectra better aligned to those of the real images, which leads to a better PD tradeoff. On the other hand, our ensembled discriminator predicts the perceptual quality more accurately, as evidenced in the no-reference image quality assessment task.
Abstract:In this paper, we propose FXAM (Fast and eXplainable Additive Model), a unified and fast interpretable model for predictive analytics. FXAM extends GAM's (Generalized Additive Model) modeling capability with a unified additive model for numerical, categorical, and temporal features. FXAM conducts a novel training procedure called Three-Stage Iteration (TSI). The three stages correspond to learning over numerical, categorical and temporal features respectively. Each stage learns a local optimum by fixing parameters of other stages. We design joint learning over categorical features and partial learning over temporal features to achieve high accuracy and training efficiency. We prove that TSI is guaranteed to converge to global optimum. We further propose a set of optimization techniques to speed up FXAM's training algorithm to meet the needs of interactive analysis. Evaluations verify that FXAM significantly outperforms existing GAMs in terms of training speed and modeling categorical and temporal features.